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Vortex phase diagrams of weakly disordered two-dimensional �2D� superconductors under a magnetic field
perpendicular to the plane are numerically studied based on a recent development on the corresponding issue
in three-dimensional �3D� systems with a low density of columnar defects at high temperatures. By examining
the field dependences of magnetic quantities and the glass correlation, two consecutive first-order transitions
�FOTs� are found to occur in weakly disordered cases even at low but finite temperatures, and the lower FOT
is identified with a remnant of the melting transition of Bragg-Bose glass at zero temperature. The resulting
phase diagram is discussed in relation to a FOT-like behavior found in superconducting thin films.
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I. INTRODUCTION

Vortex states of layered type-II superconductors in mag-
netic fields normal to each layer have been studied exten-
sively so far in relation to phenomena in optimally doped
high-Tc cuprates. Nevertheless, our understanding of the so-
called vortex phase diagram still seems to be far from com-
plete. In the case of a three-dimensional �3D� superconductor
with just a weak point disorder but with no extended defects,
the ordered phase in low fields and at low temperatures is
believed to be the Bragg glass �BrG� �Refs. 1 and 2� �or an
elastic glass3� with a quasi-long-ranged positional order of
vortices. The counterpart4 of BrG in the case with only line
�or columnar� defects �LDs� parallel to the field and perpen-
dicular to the layers has not been deeply discussed because,
broadly speaking, LDs are believed to destroy a positional
order of vortices due to their much stronger effect than weak
point defects inevitably existing in real materials. In addition
to this, the superconducting �SC� transition in systems with a
large amount of LDs has been usually observed as a continu-
ous transition. Through an analogy to the context of a quan-
tum two-dimensional �2D� Bose system in a random envi-
ronment, the resulting SC or glass phase is called Bose glass
�BoG�.5 However, recent experiments in high-Tc cuprates
with LDs have shown the presence of some first-order tran-
sition �FOT�.6–9 The observed FOT in bismuth strontium cal-
cium copper oxide �BSCCO� with a low density of LDs is
likely the melting transition of BoG into a vortex liquid �VL�
�Ref. 6� according to the absence of vortex positional order
below the FOT. On the other hand, according to a recent
magnetic measurement in yttrium barium cooper oxide
�YBCO� with a low density of LDs,7 there is an anomaly of
magnetization deep in the SC phase, similar to the sign of the
first-order BrG melting in the case with only point disorders,
in the field range where the BoG melting is also a FOT. It is
reasonable to identify the phase below these magnetic
anomalies as Bragg-Bose glass �BrBoG�,4 which is the coun-
terpart of BrG in the case with LDs. The possibility of two
separate FOTs in the H-T phase diagram �see Fig. 1� had
been speculated in a previous theoretical work.10 Further nu-
merical simulations for layered systems have also shown the

presence of double FOTs accompanied by a BrG-like low-
temperature phase.11,12 Hereafter, we call such a layered sys-
tem at high temperatures with LDs as the thermal 3D case.

A closely related issue to the thermal 3D case mentioned
above is that of disordered thin films in a field perpendicular
to the plane in the quantum regime near zero temperature. In
this quantum 2D case, the model corresponding to the
Ginzburg-Landau �GL� Hamiltonian H��� for the thermally
fluctuating SC order parameter � is a quantum Euclidean
action S������ represented in the space-�imaginary�time, in
which the fluctuating SC order parameter ���� is a dynami-
cal quantity and depends on the imaginary time �. Hence, the
pointlike static disorder in the film plays, in S, the roles of a
correlated disorder persistent in the � direction taken perpen-
dicular to the film plane. Then, the problem of the 2D phase
diagram in the present case is, in the low-temperature limit,
similar to that of the thermal 3D case. In addition, studies of
the 2D vortex phase diagram at finite temperatures will also
play a role in understanding finite-size effects in the thermal
3D case.

�

� ����

FIG. 1. One of expected H-T phase diagrams in the thermal 3D
case with a low density of LDs �Ref. 10�, which, generically, has a
lower critical point �Refs. 9, 10, and 13� of the higher FOT line. The
solid and dashed curves denote FOTs and second-order glass tran-
sitions, respectively. The portion of the dotted line of the lower FOT
has not been detected yet experimentally �Ref. 7�. Alternatively, the
two FOT lines may merge with each other if the disorder is weak
enough �Ref. 10�.
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A scaling behavior seen in resistivity data in thin SC films
has been discussed so far in several materials as evidence of
a magnetic field–tuned superconductor-insulator �FSI� quan-
tum continuous transition.14,15 It is believed that a FSI quan-
tum transition suggested by the resistive data is a second-
order �vortex� glass transition16 in disordered 2D
superconductors at zero temperature �T=0� corresponding to
the BoG to VL transition in the thermal 3D case with a high
density of LDs. Then, based on the similarity to the thermal
3D case mentioned above, it is natural to expect the presence
of some FOT in films with a low density of LDs at least in
the low-T limit. In fact, resistivity measurements in amor-
phous MoGe films with a relatively low sheet resistance have
shown a nearly discontinuous vanishing of resistance at
fields much lower than the apparent FSI transition field.15

Among the SC films14,15,17 showing a resistive behavior sug-
gestive of a FSI quantum transition, MoGe has a remarkably
weak pinning effect.18 If we can understand why another
FOT, corresponding to the BoG melting transition in the
thermal 3D case mentioned above, is easily changed into a
continuous FSI transition in this 2D quantum case, it is natu-
ral to identify the observed FOT-like behavior15 as the coun-
terpart of the BrBoG melting occurring in the thermal 3D
case with a low density of LDs.

Motivated by such a connection between the quantum 2D
and the thermal 3D vortex systems, we numerically examine
the vortex phase diagram in a layered quasi-2D supercon-
ductor under a field H perpendicular to the layers and with
LDs parallel to H by changing the number of layers or the
strengths of randomness and fluctuation. We use the GL ac-
tion expressed in terms of the SC order parameter ���� in
the lowest Landau level �LLL� in the type-II limit where the
magnetic screening is negligible. Taking the type-II limit is
rather appropriate to the 2D quantum case in which the mag-
netic penetration depth ���0��2 /Dt is often longer than the
sample size, where ��0� is the London penetration depth and
Dt is the film thickness.19 It is numerically found that, in
general, two FOTs may occur in the quantum 2D regime.
The FOT at a higher field can be identified as a BoG transi-
tion, while the lower one is presumably the BrBoG melting.
However, as the number of layers diminishes and/or the ran-
domness is stronger, the higher FOT tends to disappear more
easily than the lower one does. The resulting numerical data
are discussed in relation to closely related experimental
results.7,15 The present results imply that at lower tempera-
tures than those seen experimentally, one or two FOTs might
be present even in the SC thin films, suggesting the presence
of a second-order FSI transition. The presence of two FOTs
in the thermal 3D case has been preliminarily reported
elsewhere.12

This paper is organized as follows: In Sec. II, we describe
the GL action used in this work and explain the correspon-
dence between the quantum 2D and the thermal 3D cases. In
Sec. III, we present our simulation results. In Sec. IV, quan-
tum 2D phase diagrams that we propose based on our results
are shown and discussed. The unit �=c=kB=1 will be used
below.

II. MODEL AND PHYSICAL QUANTITIES

To construct a model useful in numerical simulations, let
us first start from the familiar quasi-2D GL Hamiltonian in

an external magnetic field H perpendicular to the layers,

H��� = H0 + Hp, �1�

where

H0 = �
j=1

NL � d2r��� j
����2�� j + 	�� j+1�r�� − � j�r���2

+



2
�� j�r���4	 , �2�

Hp = �
j=1

NL � d2r�u�r���� j�r���2. �3�

Throughout this paper, the length scales within the layers are
assumed to have been normalized by the in-plane coherence
length �0. In H0 and Hp, � j�r� is the SC order parameter
defined on the jth layer, �
−i� +2�e��0A denotes the
gauge-invariant gradient defined along the layers, curl A
=H�0ẑ, NL is the number of layers, and the interlayer-
coupling constant 	��0�, as well as �, is a dimensionless
parameter. Further, irrespective of the dimensionality of the
system, 
��0� is the main parameter determining the fluc-
tuation strength because it is inversely proportional to both
of the interlayer spacing Dt and the magnitude of the con-
densation energy. Note that the random potential u�r�� is
independent of j, implying a static disorder correlated along
H perpendicular to the layers, and that the magnetic energy
term is absent in Eq. �1� because we invoke the type-II limit.
Since we focus on � in LLL, �2 in � may be replaced by
2�e��0

2H
 l−2. Then, the mean field Hc2 is the field value at
which �=0, and � increases with increasing H. The potential
u�r� satisfies

u�r� = 0,

u�r�u�r�� = p
�r − r�� ,

where the overbar implies the random average. That is, the
pinning strength is measured in our model just by the param-
eter p proportional to the defect density. The partition func-
tion is given by

Z = Tr� exp�− H/kBT� �4�

in the thermal quasi-2D �3D� case. Following previous
works,20,21 � j�r� satisfies the semiperiodic boundary condi-
tion within the jth layer,

� j�x,y + Ly� = � j�x,y� ,

� j�x + Lx,y� = � j�x,y�exp�i
2�Ns

Ly
y� .

In addition, the periodic boundary condition

� j+NL
�x,y� = � j�x,y� .

will be assumed in the direction parallel to H. Further, � j�r�
is expanded in terms of the LLL eigenfunction
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�n�r� = � 1

�Lyl

�1/2

�
N=−�

�

exp�−
1

2l2 �x − Xn,N�2	exp�iXn,N
y

l2�
as

� j�r� = �
n=0

Ns−1

cn,j�n�r� , �5�

where n is the integer which satisfies 0�n�Ns−1, N is an
arbitrary integer,

Xn,N = Xn + LxN =
2�l2

Ly
n + LxN ,

Xn
Xn,N=0, and Ns=NxNy is the number of vortices. The
system size in each direction is L�i�=xCyj, which satisfies
the relations20,21 LxLy =2�l2Ns and Lx /Ly =
3Nx /2Ny. The
quartic term will be expressed as

� d2r�� j�r��4 =
1

LxLy
�
k

�� j�k��2,

where � j�k� is the Fourier transformation of �� j�r��2,

� j�k� =� d2r�� j�r��2exp�− i
k · r

l
�

= �
N

�
n1,n2

cn1,jcn2,j
� 
n1−n2+NsN, my

�exp�−
k2

4
�exp�− i

Xn1
+ Xn2

+ LxN

2l
kx� . �6�


�,� denotes the Kronecker delta, and k�=2�lm� /L�, with
an integer m���=x ,y�. Using these expressions, H0 is writ-
ten in LLL as21

H0 = �
n,j
���l−2��cn,j�2 + 	�cn,j+1 − cn,j�2 +




2
2�lLy

� �
n1,n2,n3

�
N1,N2

cn1,j
� cn3,j

� cn,jcn2,j
n1+n3+Ns�N1+N2�,n2+n

�exp�−

3�

2Ny
2 ��n1 − n2 + NsN1�2 + �n3 − n2

+ NsN2�2��	 . �7�

Below, the LLL approach for the thermal 3D or quasi-2D
case, illustrated above, will be extended to the corresponding
2D quantum action as a model for studying the phase dia-
gram of thin films at low temperatures. Before performing
this, however, we need to explain how the ordinary GL
model, Eq. �1�, used conventionally near Tc is qualitatively
applicable to studies in the quantum regime. In higher fields
and lower temperatures, not only � but also all coefficients
appearing in the GL Hamiltonian are operators including �2

and dependent on the underlying electronic model. In LLL,
however, they can be expressed as coefficients dependent on
l. Hence, the LLL approach can be extended to such higher
fields by including field and temperature dependences of mi-

croscopic origins in each coefficient of the GL
Hamiltonian.22,23 In addition, the main role of such micro-
scopic l dependences is, just like the l dependence of � in
Eq. �1�, to increase the magnitude of the condensation energy
with decreasing l−2. Thus, in order to obtain a qualitatively
valid l dependence of the condensation energy, we only have
to keep the l dependence of only � as far as other coefficients
such as 
 and 	 in Eq. �1� show no sign change upon sweep-
ing the field. Actually, our main purpose in the present work
is to show the presence of FOTs which occur in narrow field
ranges, where the microscopic l dependences of the coeffi-
cients are clearly irrelevant.

Next, the applicability of the LLL approach in studies of
phase transitions between different vortex phases will be dis-
cussed. This approach is conventionally used by neglecting
possible fluctuations of the flux density and, hence, is valid
for systems with a large enough GL parameter. In single
crystals of YBCO, this approximation is safely valid in fields
in the Tesla range,10 while it is not useful in BSCCO in fields
less than 100 G, where vortex lattice melting is found to
occur and a magnetic interlayer coupling between pancake
vortices is important.24 On the other hand, as already men-
tioned in Sec. I, the approximation of the type-II limit is
safely valid in 2D systems. Further, the LLL approach was
useful, in clean limit, in obtaining reasonable generic phase
diagrams both in 2D �Refs. 20 and 25� and quasi-2D �Ref.
26� cases, in which a single FOT occurs between VL and the
Abrikosov lattice. In the case with quenched disorder, in con-
trast, extensive studies of the vortex phase diagram in LLL
seem to have been limited so far to the 2D case, where, as
expected, no clear sign of a transition was found at finite
temperatures.27 On this background, it will be valuable to
clarify whether a quasi-ordered state such as BrG and BrBoG
is realized within the LLL approach for quasi-2D systems
composed of multilayers. In addition to this, a reasonable
description of the FSI transition in the quantum regime was
also developed in the LLL approach.23 For these reasons, we
believe that at the qualitative level, the LLL approach based
on the GL model is convenient and useful in studying the
vortex phase diagrams comprehensively.

Now, let us turn to giving a quantum 2D GL action
equivalent to the Hamiltonian in Eq. �1�. Such a GL action
can be found for a quantum Josephson-junction array with a
charging energy term and a randomness of the Josephson-
coupling energy, which is a standard model of a disordered
granular superconductor. If we focus on a relatively low
magnetic field range in which the disorder-induced phase
glass ordering is negligible, the quenched disorder is treated
as the potential disorder of the type represented by Hp in Eq.
�1�.28 Further, if the Ohmic dissipation is negligible and the
intragrain contribution to the charging energy dominates over
the corresponding intergrain one, the effective action of the
quantum 2D Josephson-junction array can be expressed by28

S̃Q������ =� d2r�
0

T−1

d��	nd�����r,���2 + ���l−2� + u�r��

����r,���2 +



2
���r,���4	 , �8�

which is of the same form as the continuum limit of Eq. �1�
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if the coordinate jDt perpendicular to the layers in model �1�
is identified with the imaginary time �. Corresponding to Eq.
�8�, the partition function is given by

Z = Tr� exp�− S̃Q� . �9�

In Secs. III and IV, we present results of numerical simula-
tions for the nondissipative model �Eq. �8�� and will discuss
experimental observations in nominally amorphouslike thin
films.15

However, Eq. �8� is not directly applicable to amorphou-
slike superconductors because the quantum dynamical term
of the corresponding effective GL action is dominated in
such systems by the dissipative one: According to the stan-
dard functional-integral technique,29 the following GL action
or functional can be derived based on an electronic Hamil-
tonian with an attractive interaction term of BCS type:29

SQ =� d2r�T�
�

	d�������r��2 + �
0

T−1

d�����l−2� + u�r��

����r,���2 +



2
���r,���4	� , �10�

where ��r ,��=T�����r�exp�−i���, 	d�0, and � is the
bosonic Matsubara frequency. As mentioned earlier, 	d as
well as other coefficients depends on l at low temperatures.
Note the difference in the dynamical term between Eqs. �8�
and �10�. This should be reflected in the difference of the
universal class of the quantum critical behavior of the
second-order BoG transition at T=0. As far as focusing on
the presence or absence of FOTs in the quantum regime by
neglecting the details of the quantum critical fluctuation
mentioned above, however, our study of the nondissipative
model, Eq. �8�, is also useful in judging expected phase dia-
grams in the purely dissipative case. In fact, it will be ex-
plained in Sec. IV that the main features, closely related to
the experimental observation,15 of the vortex phase diagram
following numerically from the nondissipative model, Eq.
�8�, should be found in the corresponding results of the dis-
sipative model.

To make action �8� tractable numerically, the continuous
imaginary time variable will be discretized in the manner �
→ j��, and the � integral in Eq. �8� will be replaced by a
summation. After rescaling ��

1/2� j→� j, the resulting GL
action takes the following form:

S =� d2r� �
j=0

NL−1 �	̄�� j�r�� − � j+1�r���2 + ���l−2� + u�r���

��� j�r���2 +

̄

2
�� j�r���4	 , �11�

where � j�r��=��r� , j���, and


̄ =



��

,

	̄ =
	nd

��
2 �12�

are dimensionless quantities. It is reasonable to, just like the
interlayer spacing Dt in the thermal quasi-2D model �Eq.
�1��, fix the thickness of each time slice ��= �TNL�−1 to a
time scale of O�Tc0

−1�, where Tc0 is the mean-field SC transi-
tion temperature in H=0. In fact, in searching for a transition
in 3D systems using a quasi-2D model with a finite Dt, it is
often unnecessary to take the Dt→0 limit. Thus, by choosing
�� to be a fixed value of O�Tc0

−1�, the temperature T will be
measured under model �11� by NL in the manner

T =
1

NL��

� NL
−1, �13�

while the applied field H is primarily measured by �. By
noting that Eq. �11� is of the same form as H /T given in Eq.
�1�, the action obtained by rewriting Eq. �11� in the form of
Eq. �7� will be used hereafter as a model for numerical simu-
lations in both the quantum 2D and the thermal 3D cases.

Since we focus on the low-temperature regime in the
quantum 2D case, the microscopic T dependences of the co-

efficients �, 
̄, and 	̄ are cut off22 by the finite l−2 and,
hence, may be neglected. Hereafter, we will assume the re-

lation �= l−2−1= �H /Hc2�0��−1. Further, 
̄ will be estimated

as follows: Using the well-known relation between 
̄ and the

London penetration depth ��0�, we have the relation 
̄
=32��e��0��2 / �Dt���. For simplicity, we set ��=Tc0

−1. Then,
for the parameter values ��0�=103 �A�, Tc0=1 �K�, and

Dt=10 �A�, we have 
̄=3�10−3. Below, 
̄ values compa-
rable with this estimate will be used.

In our numerical simulation to be explained in Sec. III,
the H dependences of physical quantities are investigated at a
fixed temperature. By noting that the number of vortices Ns
is proportional to H under fixed Lx and Ly �system sizes�, two
kinds of simulations have been performed in this research.
One is a simulation under a fixed Ns, and the other is based
on the use of fixed Lx and Ly.

12 We have found that the
former simulation in which L� / l ��=x ,y� is fixed in chang-
ing H gives much clearer results. Hereafter, we will present
just the simulation results obtained under the fixed number of
vortices Ns=64. Based on previous works in LLL in the ther-
mal 2D case,20,27 simulations with Ns=64 are expected to
give essentially correct results on the phase diagram.20,21

The physical quantities we examine in the quantum 2D
case will be defined below. In the present system, a FOT is
observed as a jump and some hysteresis of the internal en-
ergy or the magnetization. In a GL functional derived micro-
scopically, the magnetization M is given as an appropriate
sum of the ensemble and spatial averages of �� j�2, �� j�4, and
other higher-order GL terms because the coefficients of all
terms of the GL functional S are H dependent in general. On
the other hand, if only the H dependence of � is taken into
account in Eq. �11�, −M is equivalent to the average of the
�� j�2 term, and then, in the quantum 2D case, we may have
to measure only a hysteresis of the �� j�2 term upon sweep-
ing. Since the so-called Abrikosov factor measuring the
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structure of the vortex state is proportional to the average of
the �� j�4 term in S, the �� j�4 term should also show a hys-
teresis at a FOT between different vortex states. That is, any
summation of the spatial average of the �� j�2 term and that of
the �� j�4 one can become a measure of a hysteresis due to a
FOT. On the other hand, in the thermal 3D case, we should
examine a hysteresis of the Hamiltonian itself given in Eq.
�1�.20 Below, we choose to examine the following quantity
proportional to the hysteresis of S upon sweeping the mag-
netic field:

�E =
1

2�NsNL
��S�dec − �S�inc� , �14�

where the index “inc” �“dec”� denotes the process increasing
�decreasing� H. For the initial condition of �, we employ the
mean-field solution of the triangular vortex lattice in the pro-
cess increasing H �i.e., l−1�, while the vanishing � is initially
used for the process decreasing H.

Next, to observe a configuration of vortices at each H, we
have examined the structure factor

I�k� 
 �NL� j
�� j�k��2

�� j
� j�0��2 � , �15�

where � j�k� is given by Eq. �6�. The magnetization M of
model �11� may be defined as

M = − NL
−1�

j
� d2r��� j�r��2� = − NL

−1�
n,j

��cn,j�2� , �16�

where a H dependent coefficient was set to be unity. Since M
in the quantum 2D case, as well as the entropy in the thermal
3D case, is a first derivative of the free energy and may not
necessarily reflect the details of a higher-order transition or a
sharp crossover, we have preferred calculation of the follow-
ing differential susceptibility:

� �
�

��
M =

1

NL
�
n,j

�
n�,j�

���cn,j�2�cn�,j��
2� − ��cn,j�2���cn�,j��

2�� ,

�17�

which, in the thermal 3D case, corresponds to the heat ca-
pacity normalized by its mean-field jump value in H=0 at Tc.
This quantity helps us to distinguish a genuine transition in
the low-T �NL→�� limit from just a crossover. For the same
purpose, we have also examined the glass correlation length
�G. To define �G, we have employed the Fourier transform of
the glass correlation function GG,16,30

GG�k,kz = 0� =
1

LxLyNL
�
j, j̃

� d2r� d2r̃��� j�r�� j+ j̃
� �r + r̃���2 exp�− i

k · r̃

l
�

=
1

LxLyNL
�
j, j̃

�
n1,n2

�
N

�cn1,jcn2,j+ j̃
� ��cn1+NsN−my,j

� cn2+NsN−my,j+ j̃�exp�−
k2

2
�exp�− i

Xn1
− Xn2

l
kx� , �18�

where ky =2�lmy /Ly. Generally, �G in the VL region is de-
rived from

�G
2 = − l2�G̃G�k��−1� �

�k2 G̃G�k��
k=0

because the correlation function there is expressed as G̃G
�1 / �k2+ l2�G

−2�. Consequently, for simulations using a finite
system size, we can write it down as

�G =
l

2 sin�kmin/2�� G̃G�0�

G̃G�kmin�
− 1	1/2

. �19�

Although we set kmin=2�l /Ly, this expression can be defined
as the correlation length because the system is essentially
isotropic in the x-y plane.

III. NUMERICAL RESULT

We have performed Monte Carlo �MC� simulations of the
model, Eq. �11�, to detect FOTs into glass phases or regimes.
We have used the parameter values 	̄=0.1 and Nx=Ny =8 for
all simulations and have examined the systems with one,
two, four, and eight layers �i.e., NL=1, 2, 4, and 8� in the
pure �p=0� and disordered �p=1.0�10−4, 2.0�1.0−4, and
3.0�10−4� cases. The largest size we use, NxNyNL=512, is
comparable with 560 in Ref. 26 and larger than those used in
Ref. 21 The fluctuation strength has also been changed by

choosing the values 
̄=1.0�10−2, 5.0�10−3, and 2.0
�10−3 �see the estimations given below Eq. �13��. The Mar-
kov chains for cn,j were generated by the Metropolis algo-
rithm. We have used the first �2–4��105 MC steps for ther-
malization, and additional 5.0�104 MC steps have been
used for observation, in particular, of a FOT occurring deep
in the glassy regime.
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We stress that our simulation is performed at finite T, i.e.,
for layered systems with a finite number of layers �see Eq.
�13��. Hence, strictly speaking, we address only the VL re-
gime when the disorder is nonvanishing �p�0� because no
glass phases are believed to be present in disordered 2D
systems at finite T.27 Nevertheless, as seen below, we find
that FOTs, signaled by some hysteresis which survives even
when MC steps are increased enough, appear only at low
enough temperatures �i.e., for larger NL values�. That is, al-
though no true glass phase is expected, FOTs survive at low
but nonzero T. Such a situation is similar to the VL to vortex
slush transition in the context of the thermal 3D case argued
in Refs. 31 and 32 and verified numerically33 and
experimentally,34 where the vortex liquid and slush states are
continuously connected with each other because of the pres-
ence of a critical end point of a FOT. Below, the regime in
fields lower than a detected FOT will be often called in this
sense as BoG or BrBoG by assuming that our computations
at finite T reflect the corresponding phase diagram in the T
→0 limit.

A. First-order transitions

Let us first start by explaining dependences on the disor-
der or the vortex-pinning strength of �E data. Examples of
such data are shown in Fig. 2. In this and ensuing figures
expressing �E vs �, a measurably large peak of �E in a
narrow � �i.e., field� range implies some hysteresis accom-
panying a FOT. We have verified that each of such hysteresis
survives even for more MC steps; hence, we argue that it is
an intrinsic event accompanying a phase transition in equi-
librium. Figure 2 shows the p dependences of �E in the

NL=4 case for three values of the pinning strength, p=0,
1.0�10−4, and 3.0�10−4. In the perfectly clean �p=0� case,
no glass phases are present, and the only ordered phase is the
vortex lattice occurring through a single FOT at ��−0.17
even at finite temperatures. In the weak disorder case with
p=1.0�10−4, we find two consecutive FOTs upon sweeping
the field. Based on the argument in Ref. 10, the low-field
regime is expected to correspond to BrBoG,35 while the BoG
regime is expected to exist between the two FOTs in the low
T�NL

−1 limit. That is, the FOT in clean limit has split into
two FOTs to induce BoG as an intermediate regime in the
range 0� p�1.0�10−4. Here, it is a remarkable feature that,
as seen in experiments in high-Tc cuprates,9,36 the position of
the first-order BoG melting is almost the same as the FOT in
clean limit �see Ref. 10�. Finally, for the stronger disorder
�p=3.0�10−4�, both FOTs seen for p=1.0�10−4 have been
lost. Based on the common view on the 3D system with a
high density of LDs explained in Sec. I, this case corre-
sponds, if realized even in large NL limit, to a system at T
=0 with a second-order BoG to VL transition but with no
BrBoG. However, since there is no reason why the two FOTs
should be lost altogether at the same p value, we expect the
presence of a p range in which either of them survives.

To verify the presence of a situation with a single FOT for
finite p values, we have investigated the dependences of

those FOTs on the fluctuation strength 
̄ instead of trying to
find their subtle p dependences in a narrow p range because
a decrease in fluctuation at a fixed p would imply an effec-
tive enhancement of the vortex-pinning strength. As Fig. 3

shows, either of the two FOTs in 
̄=1.0�10−2 has disap-

peared when 
̄=2.0�10−3. However, since the position of
the remaining transition has shifted to a remarkably higher
field, it is not necessarily clear from this figure which of the
FOTs has disappeared. To examine the positional ordering of
vortices above and below the remaining FOT, the snapshots

of the structure factor in 
̄=2.0�10−3 case are shown in Fig.
4. The sharp Bragg peaks in �a� showing a hexagonal sym-

metry suggest that when 
̄=2.0�10−3, the vortex state be-

0

0.001

0.002

0.003

0.004

0.005
��

-0.3 -0.2 -0.1 0�

FIG. 2. �E data for different p values, p=0 �solid circles�, 1.0
�10−4 �crosses�, and 3.0�10−4 �open squares�, of the NL=4

system for 
̄=1.0�10−2. For p=0, the low-field phase is a
nearly perfect vortex lattice which occurs below a single FOT at
��−0.17. In contrast, in the case with p=3.0�10−4, no clear hys-
teresis appears anywhere, reflecting a second-order BoG to VL tran-
sition at T=0, which, in the large NL limit, presumably occurs in
��−0.18 �see Figs. 9 and 10�. In the intermediate value p=1.0
�10−4, we have two FOTs with remarkable hysteresis indicative of
a BrBoG to BoG and a BoG to VL transition.
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FIG. 3. �E data for 
̄=2.0�10−3 �open triangles� and 1.0

�10−2 in the NL=4 system with p=1.0�10−4. The result for 
̄
=1.0�10−2 is the same as in Fig. 2.
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low the remaining FOT is a nearly triangular vortex lattice.

That is, it is expected that this FOT in 
̄=2.0�10−3 is the
BrBoG to BoG transition, while the BoG melting transition
has changed into a second-order one in large NL limit. This
conjecture35 that the first-order melting transition of BrBoG
is more robust than the first-order melting of BoG is also
supported by the NL dependence of the phase diagram given
below.

Here, we note that in the structure factors following from
our computations using Ns=64, a weak twofold anisotropy is
seen in the x-y plane �see Fig. 4�. This anisotropy is a con-
sequence of the use of the finite Ns value and of the Landau
gauge for the external vector potential A. Of course, for a
larger Ns value,20 such a specific anisotropy is not seen in
states with the triangular lattice symmetry. However, since
this anisotropy for Ns=64 is seen even in high enough fields
near Hc2 and, hence, is merely a bystander in the phase dia-
gram, it does not seem that this anisotropy induced by the
small Ns has played an essential role in obtaining phase dia-
grams.

In Fig. 5, �E vs � curves computed in terms of p=1.0

�10−4 and 
̄=1.0�10−2 are shown for NL=1, 2, 4, and 8
systems. For the moment, we focus on the cases of NL=4
and 8, in which two consecutive FOTs are seen. One finds
that with decreasing T�NL

−1, the transition points shift to
higher fields, reflecting the T dependence of the vortex lattice
melting field in the p=0 case, and that the BoG regime be-
comes narrower. Three snapshots of the structure factor in
the NL=8 case below the lower FOT, above the higher FOT,
and in the intermediate fields are shown in Fig. 6. We believe
that our identification based on these figures between the
three regimes and the three vortex states in the T→0 limit
�BrBoG, BoG, and VL� is justified. Below the lower FOT

�Fig. 6�a��, the Bragg peaks are quite sharp, while the corre-
sponding ones in the structure factor �Fig. 6�b� taken in the
intermediate regime are weaker and vaguer. By comparing
Fig. 6 with Fig. 4, one will recognize similarity in the sharp-
ness of Bragg peaks between Figs. 6�a� and 4�a�. This fact
strongly supports our earlier identification between the FOT

in the 
̄=2.0�10−3 case in Fig. 3 and the BrBoG to BoG
melting transition. Therefore, we expect that in the range
1.0�10−4� p�3.0�10−4 in Fig. 2, we have the situation
�in the low-T limit� in which the BoG melting is continuous,
while the FOT between BrBoG and BoG survives.

Features closely related to those mentioned above are al-

ready seen in the NL=2 case. Just like the 
̄=2.0�10−3

curve of the NL=4 system in Fig. 3, only a single FOT ap-
pears in the NL=2 curve in Fig. 5. Through the correspond-
ing data of the structure factor shown in Fig. 7, the single
FOT in this NL=2 case is expected to be a remnant of the
BrBoG melting which should occur in large NL limit because
the Bragg peaks in Fig. 7�a� are much sharper than those in
Fig. 6�b� for NL=4. However, due to the small size parallel
to H, the state just above this FOT seems to be not a BoG-
like state but the 2D VL. In the context of the 2D quantum
case, it implies that at a temperature corresponding to the
range 2�NL�4, the FOT line between BoG and VL has a
critical end point.

Further, we show in Fig. 8 the p dependences of the �E
curve in the NL=2 case. Again, an increase in p leads even to
the disappearance of the remnant of the discontinuous
BrBoG melting. By comparing Fig. 2 with Fig. 8, a single
FOT corresponding to the BrBoG melting might appear at
extremely lower T �i.e., for a larger NL� when p=2.0�10−4,
although no FOT is seen in the NL=2 system, i.e., at higher
T.
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FIG. 4. Snapshots of the structure factor in the 
̄=2.0�10−3

case in Fig. 3 for �a� �=−0.12 and �b� �=−0.07. The vortex state
just above the FOT corresponds to BoG.
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FIG. 5. �E data in systems with different NL under the fixed

parameters p=1.0�10−4 and 
̄=1.0�10−2. The data of the cases
with NL=8 �solid squares� and 4 �crosses� show hysteresis around
two � values, while hysteresis in the NL=2 system �open circles�
occurs only around a single � value. In addition, in the NL=1 case
�open diamonds� corresponding to the purely thermal 2D case, no
hysteresis implying a FOT is seen �Ref. 27�. Both of the two hys-
teresis peaks seen in the NL�4 shift to higher fields when NL=8
�i.e., as temperature decreases�.
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B. Susceptibility and correlation length

In this subsection, we show results of the susceptibility �
and the glass correlation length �G. Results on these two
quantities will become a more firm basis of the existence of
FOTs in the quantum 2D case because numerical results of
these two quantities are directly comparable with the corre-
sponding theoretical ones32 in contrast to �E. Figure 9 pre-
sents the � vs � data corresponding to the two curves for
p=1.0�10−4 and 3.0�10−4 of the NL=4 system in Fig. 2.
Note that in the context of the thermal 3D case, the field
dependence of � shown here corresponds to the temperature
dependence of the specific heat �see the sentences following
Eq. �17��. Near �=−0.1, the amplitude fluctuation of � is
still active; hence, � smoothly grows with decreasing � when
��−0.1. The fact that � takes a nearly constant value in the
range −0.15���−0.1 and also near ��−0.2 is a conse-

quence of the mean-field result �
̄ / �LxLy�=
A
−1�0.86 for

the triangular Abrikosov lattice, where 
A=1.1596 is the cel-

ebrated value of the Abrikosov geometrical factor for the
triangular lattice. On the other hand, � in p=1.0�10−4 de-
viates from the mean-field value and grows in the range
around the value ��−0.17 and also in ��−0.21, implying
precursors of glass transitions. The divergent behavior
around the point �=−0.17 implies the FOT between BoG
and VL, which seems to have been broadened by the finite
NL value. Further, the tendency of � increasing in ��−0.2
with decreasing � is expected to be a reflection of another
FOT between BrBoG and BoG lying near �=−0.235.

On the other hand, the � curve in p=3.0�10−4 does not
show a sharp divergence due to the absence of FOT. Never-
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FIG. 6. Snapshots of the structure factor in the NL=8 case
in Fig. 5 at different field strengths. �a�, �b�, and �c� are the results
just below the lower FOT ��=−0.19�, between the two FOTs
��=−0.15�, and above the higher FOT ��=−0.11�, respectively.
Clearly, the positional order has been completely lost at �=−0.11.
Similar figures are obtained in the NL=4 case if a different set of �
values are chosen.
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FIG. 7. Snapshots of the structure factor of the NL=2 system for
�a� �=−0.34 and �b� �=−0.23 in Fig. 5. Although quite sharp peaks
with hexagonal symmetry appear in �a�, such peaks are not visible
any longer in �b� just above the transition. Note the � values in
these figures which are much lower than the corresponding ones in
the NL=8 case.
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FIG. 8. �E data of the NL=2 systems for different pinning
strengths, p=1.0�10−4 �open circles� and 2.0�10−4 �open tri-
angles�. The p=1.0�10−4 result is the same as that in Fig. 5.
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theless, the plot of � data in a small � range, shown in the
inset of Fig. 9, seems to indicate the presence of a broad cusp
or maximum near �=−0.18. This might be due to the above-
mentioned critical end point, existing in the temperature
range corresponding to 2�NL�4, of the FOT line between
BoG and VL. Alternatively, it may merely reflect the cross-
over around the mean-field 2D glass transition line at T�0
and below Hc2,23 which, at weak disorder, should lie close to
the 2D melting line in the p=0 limit. No genuine glass tran-
sition occurs along this line in this case; rather this line may
be well defined as a sharp crossover line.37 That is, in this
scenario, the broad maximum is due to the thermal fluctua-
tion on this crossover line.

The upper two curves in Fig. 10 present data for the glass
correlation length �G, normalized by the system size Ly, com-
parable with the � curves in Fig. 9. Note that Ly / l is a con-
stant at any � in the present simulations. As the field H
decreases from the value ��−0.12, �G starts to grow
smoothly. This behavior is already seen in Fig. 9 as a gradual
growth of � in the same range. In the presence of the remain-
ing FOT, however, �G rapidly grows around −0.165 and
starts to saturate to a finite value near −0.17 because the
true BoG phase is not realized in NL=4 systems. On the
other hand, in the p=3.0�10−4 case, where the FOTs have
been lost, an additional small growth of �G is visible near
�=−0.17 consistently with the broad maximum of � in Fig.
9. Note that the saturated value, 0.785, in the p=1.0�10−4

case is larger than the corresponding value 0.76 in the p
=3.0�10−4 case. This is consistent with the argument in
Ref. 32 that the glass ordering is stronger as the positional
correlation of vortices is enhanced. On the other hand, the
finite �G value below the higher FOT in the p=1.0�10−4

case is one piece of evidence that a genuine glass phase is
not reached at finite temperatures in spite of the presence of
FOT accompanied by hysteresis. Further, the fact that �G in
p=3.0�10−4 is longer than that in p=1.0�10−4 in the range
−0.16���−0.12 is a consequence of a critical region of the
glass fluctuation broadened by, due to the p increase, chang-
ing the FOT into a continuous crossover on the mean-field
2D glass transition line at weak disorder.

On the other hand, �G in the NL=2 case shows a qualita-
tively similar field dependence to that in the NL=4 and p
=3.0�10−4 case except for two features: With increasing T
�NL

−1, �G is clearly lowered, and the field at which the in-
crease in �G�H� starts to saturate is significantly lowered. The
latter feature can be regarded as a reflection of the field de-
pendence of the mean-field 2D glass transition temperature.

IV. EXPECTED PHASE DIAGRAM AND DISCUSSION

The numerical results shown in Sec. III imply the follow-
ing parameter dependences of the 2D phase diagram in the
quantum regime: First, with increasing defect density propor-
tional to p, the only one FOT line in the p=0 case splits into
two FOTs while keeping the position of the higher FOT un-
changed �see Fig. 1�. Thus, with increasing p, BrBoG is de-
stabilized, and the lower FOT �i.e., the melting position of
BrBoG� is shifted to a lower field. However, the lower FOT
is more robust than the higher one against the disorder, al-
though both of them are lost as p is increased further. Sec-
ond, as the temperature T is lowered, all glass transition
fields increase in general, and the BoG melting, as well as
the BrBoG melting, tend to occur as a FOT. Third, with

increasing fluctuation strength 
̄, the BoG melting tends to
become a FOT, and all glass transitions tend to occur in
lower fields. Note that the lowering of T is not equivalent to
the reduction in fluctuation. In the present case with quantum
fluctuation effects, the cooling leads to the formation of
BrBoG, which is the new ordered phase; hence, it also plays
a role in effectively reducing p. Further, the fact that at a
fixed T, the position of BoG to VL transition at weak enough
disorder does not deviate from the melting line in clean limit
is remarkable and seems to be consistent with the previous
experiments.9,36
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FIG. 9. Results of the normalized susceptibility �0
�
̄ /LxLy

for p=1.0�10−4 �crosses� and 3.0�10−4 �open squares� computed

under fixed values 
̄=1.0�10−2 and NL=4.
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FIG. 10. Results of the dimensionless glass correlation length
�G /Ly in the NL=2 and 4 systems. The pinning strength in the NL

=2 case �open circles� is p=1.0�10−4, while the curves in the
NL=4 case correspond to those in Fig. 9. Note that in the NL=4
case, the correlation length for p=1.0�10−4 becomes longer than
that for p=3.0�10−4 below the BoG melting field estimated from
the corresponding � and �E data, while the former is shorter than
the latter above the melting field.
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Expected phase diagrams following from these arguments
are sketched in Fig. 11. The critical end point of the FOT line
between the BoG and VL regimes in Fig. 11�a� may become
the origin of a FSI quantum critical behavior reflected as the
scaling behavior of resistivity curves. For large enough p,
this higher FOT is lost, while the critical end point survives
as the quantum critical one. Presumably, the experimental
phase diagrams suggested in most of real systems14,15,17 be-
long to diagram �b�, where the lower FOT may not be
present any longer. We believe that, nevertheless, the pres-
ence of the lower FOT has been detected in MoGe films15

with a low p value �see Sec. I�. Alternatively, some real
materials might have phase diagram �a� if the measurements

have been performed at temperatures higher than the end
point of the lower FOT in �a�. If so, one or two FOTs might
be detected in experiments at further lower temperatures.

We should note here that we cannot definitely conclude
from our simulation results whether the BoG phase at T=0 is
present or not. Actually, the size dependences in of the two
FOTs shown in Fig. 5 suggest that the intermediate BoG
might not occur in the large NL limit. If so, as indicated by a
dashed curve, the two FOT lines in Fig. 11�a� should merge
at some temperature Tcr very close to T=0 so that we might
have a single FOT in 0�T�Tcr. However, it does not imply
that at T=0, the BoG phase is always lost in the presence of
BrBoG. In fact, under a fixed strength p of the disorder, the
changes in vortex states upon decreasing H in the quantum
2D case correspond to those upon cooling in the thermal 3D
case, and both of the two glass phases seem to appear in the
latter case. In fact, experimental data in YBCO have also
shown the presence of two FOTs.7 Therefore, it is believed
that the generic phase diagrams in the thermal 3D system
and the 2D one at T=0, like the solid curves in Fig. 11�a�,
include two FOTs separating the different vortex states below
Hc2.

In general, model �8� with no dissipative dynamical term
is not directly applicable to nongranular amorphouslike SC
films in which the dynamics of the SC order parameter is
dominated by the Ohmic dissipative term. However, our
main conclusion that the FOT between BrBoG and BoG
states tends to be more robust than another one between BoG
and VL seems to become more reasonable when the dissipa-
tive dynamics is incorporated for the following reasons:
First, when the dynamics is primarily dissipative, the quan-
tum fluctuation effect is weakened, and then, our results
shown in Fig. 3 indicate that the FOT between BoG and VL
tends to be lost more easily. In addition, the fact that the
Ohmic dissipative term is linear in ��� �see Eq. �10��, in
contrast to the nondissipative �2 term, implies that the posi-
tional ordering in BrBoG and, thus, the discontinuous nature
of the BrBoG melting will be enhanced further by inclusion
of the dissipative term. Therefore, the inclusion of the dissi-
pative dynamical term would lead to a more firm basis for
our main conclusion mentioned above, and our identification
between the FOT suggested in an experiment15 and the first-
order BrBoG melting transition should be valid irrespective
of the details of dynamics of the SC order parameter.
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FIG. 11. Expected phase diagrams, focused on the low-T region,
of disordered 2D superconductors under magnetic fields perpen-
dicular to the film plane in the cases with �a� low enough p and �b�
higher p. In �a�, the dotted curve is a crossover line on which the 2D
vortex lattice melting in LLL should occur in p=0 and, at lower T,
is followed by the higher FOT line at weak enough disorder accord-
ing to the argument in Ref. 10. Each arrow implies an expected
change in each line due to an increase in p. Note that the p=0
melting field at T=0 lies below Hc2�0� �Ref. 22�. Based on our
simulation results, the possibility that, as indicated by a thick
dashed curve, the two FOT lines merges at a low but nonzero tem-
perature Tcr cannot be excluded. In �b�, the critical end point of the
higher FOT in �a� reduces to the T=0 limit of the dotted curve,
although Hc should move to higher fields as p is increased further

under a fixed 
̄ value �Ref. 38�. In both figures, the thin dashed lines
indicate boundaries of the QC region due to the critical �end� point
of the BoG to VL transition line. According to Eq. �2.15� of Ref. 23,
the QC region at fixed T is broadened with decreasing p.

MYOJIN, IKEDA, AND KOIKEGAMI PHYSICAL REVIEW B 78, 014508 �2008�

014508-10



1 T. Nattermann and A. Scheidl, Adv. Phys. 49, 607 �2000�; T.
Nattermann, Phys. Rev. Lett. 64, 2454 �1990�.

2 T. Giamarchi and P. Le Doussal, Phys. Rev. B 52, 1242 �1995�.
3 D. S. Fisher, Phys. Rev. Lett. 78, 1964 �1997�.
4 T. Giamarchi and P. Le Doussal, Phys. Rev. B 55, 6577 �1997�.
5 D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48, 13060

�1993�.
6 M. Menghini, Y. Fasano, F. de la Cruz, S. S. Banerjee, Y. Mya-

soedov, E. Zeldov, C. J. van der Beek, M. Konczykowski, and T.
Tamegai, Phys. Rev. Lett. 90, 147001 �2003�.

7 T. Nishizaki, K. Kasuga, Y. Takahashi, S. Okayasu, and N.
Kobayashi, J. Phys.: Conf. Ser. 51, 267 �2006�.

8 C. J. van der Beek �private communication�.
9 W. K. Kwok, R. J. Olsson, G. Karapetrov, L. M. Paulius, W. G.

Moulton, D. J. Hofman, and G. W. Crabtree, Phys. Rev. Lett.
84, 3706 �2000�.

10 R. Ikeda, J. Phys. Soc. Jpn. 70, 219 �2001�.
11 C. Dasgupta and O. T. Valls, Phys. Rev. B 72, 094501 �2005�.
12 S. Koikegami and R. Ikeda, AIP Conf. Proc. 850, 841 �2006�.
13 T. Nishizaki, K. Shibata, and N. Kobayashi, Physica C 460-462,

281 �2007�.
14 A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927

�1990�; N. Markovic, C. Christiansen, A. M. Mack, W. H. Hu-
ber, and A. M. Goldman, Phys. Rev. B 60, 4320 �1999�.

15 N. Mason and A. Kapitulnik, Phys. Rev. B 64, 060504�R�
�2001�.

16 M. P. A. Fisher, Phys. Rev. Lett. 65, 923 �1990�.
17 S. Okuma, T. Terashima, and N. Kokubo, Solid State Commun.

106, 529 �1998�; J. A. Chervenak and J. M. Valles, Jr., Phys.
Rev. B 61, R9245 �2000�; V. F. Gantmakher et al., JETP Lett.
71, 160 �2000�.

18 S. Okuma, K. Suzuki, and N. Kokubo, Physica C 463-465, 232
�2007�.

19 P. G. de Gennes, Superconductivity of Metals and Alloys
�Addison-Wesley, Reading, MA, 1989�, Sec. 32.

20 Y. Kato and N. Nagaosa, Phys. Rev. B 48, 7383 �1993�.
21 J. Hu and A. H. MacDonald, Phys. Rev. B 56, 2788 �1997�. We

remark that, in contrast to their argument on the presence of
ODLRO, the weak but nonvanishing size dependence of their z
shown in Fig. 9 of this reference is consistent with the presence
of not off-diagonal long-range order �ODLRO� but quasi-long-
ranged phase coherence in the 3D vortex lattice in type-II limit
stressed by several authors; �M. A. Moore, ibid. 45, 7336
�1992�; R. Ikeda, T. Ohmi, and T. Tsuneto, J. Phys. Soc. Jpn. 61,
254 �1992��.

22 R. Ikeda, Int. J. Mod. Phys. B 10, 601 �1996�.
23 H. Ishida and R. Ikeda, J. Phys. Soc. Jpn. 71, 254 �2002�.
24 G. Blatter, V. B. Geshkenbein, A. I. Larkin, and H. Nordborg,

Phys. Rev. B 54, 72 �1996�.
25 In two dimensions, the consecutive and continuous melting tran-

sitions might be an alternative scenario dependent on micro-
scopic details: S. Doniach and B. A. Huberman, Phys. Rev. Lett.
42, 1169 �1979�; D. S. Fisher, Phys. Rev. B 22, 1190 �1980�.

26 R. Sasik and D. Stroud, Phys. Rev. B 52, 3696 �1995�.
27 M. S. Li and T. Nattermann, Phys. Rev. B 67, 184520 �2003�.

The Cardy-Ostlund-Carpentier-Le Doussal �COCD� state de-
tected in their thermal 2D simulation is different from the Br-
BoG regime we argue as the low-field quantum state because the
FOT line implying the BrBoG melting disappears with increas-
ing temperature, in contrast to the transition curve in Fig. 10 of
this reference. We conjecture that the disorder strengths used in
our simulation were strong enough to destroy the COCD state,
although the lowest p value we have used cannot be compared

directly with their �̃c.
28 R. Ikeda, Phys. Rev. B 74, 054510 �2006�; R. Ikeda, J. Phys.

Soc. Jpn. 76, 064709 �2007�.
29 V. N. Popov, Functional Integrals in Quantum Field Theory and

Statistical Physics �Reidel, Dordrecht, 1983�.
30 R. Ikeda, J. Phys. Soc. Jpn. 69, 559 �2000�.
31 T. K. Worthington, M. P. A. Fisher, D. A. Huse, J. Toner, A. D.

Marwick, T. Zabel, C. A. Feild, and F. Holtzberg, Phys. Rev. B
46, 11854 �1992�.

32 R. Ikeda, J. Phys. Soc. Jpn. 65, 3998 �1996�.
33 C. Dasgupta and O. T. Valls, Phys. Rev. B 76, 184509 �2007�,

and references therein.
34 K. Shibata, T. Nishizaki, T. Sasaki, and N. Kobayashi, Phys.

Rev. B 66, 214518 �2002�.
35 Once the spatially varying flux density is included beyond the

type-II limit, BrBoG might be unstable. This may be a reason
why the BrBoG melting is quite weak and has been rarely de-
tected in the thermal 3D systems. In fact, the second-peak-like
line detected in the magnetization measurement �Ref. 7� was not
identified in higher fields and may end at a critical point. In
contrast, in the quantum 2D case, the assumption of type-II limit
is safely valid because of the long �L

2 /Dt �Ref. 19�; hence,
BrBoG is expected to be a well-defined phase at T=0.

36 B. Khaykovich, M. Konczykowski, K. Teitelbaum, E. Zeldov, H.
Shtrikman, and M. Rappaport, Phys. Rev. B 57, R14088 �1998�.

37 V. M. Galitski and A. I. Larkin, Phys. Rev. Lett. 87, 087001
�2001�; R. Ikeda, ibid. 89, 109703 �2002�.

38 In real disordered metallic films, an increase in the sheet resis-

tance Rn enhances both 
̄ and p and, consequently, decreases Hc.
See R. Ikeda, J. Phys. Soc. Jpn. 72, 2930 �2003�. For the same
reason, the Rn dependence of the width of the quantum critical
�QC� region will not necessarily coincide with its p dependence
indicated in Fig. 11.

NUMERICAL STUDY OF QUANTUM VORTEX PHASE… PHYSICAL REVIEW B 78, 014508 �2008�

014508-11


